some families of graphs whose domination polynomials are unimodal

Authors

s. alikhani yazd university

s. jahari yazd university

abstract

let $g$ be a simple graph of order $n$. the domination polynomial of $g$ is the polynomial $d(g, x)=sum_{i=gamma(g)}^{n} d(g,i) x^{i}$, where $d(g,i)$ is the number of dominating sets of $g$ of size $i$ and $gamma(g)$ is the domination number of $g$. in this paper we present some families of graphs whose domination polynomials are unimodal.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some Families of Graphs whose Domination Polynomials are Unimodal

Let $G$ be a simple graph of order $n$. The domination polynomial of $G$ is the polynomial $D(G, x)=sum_{i=gamma(G)}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$ and $gamma(G)$ is the domination number of $G$. In this paper we present some families of graphs whose domination polynomials are unimodal.

full text

Avalanche Polynomials of some Families of Graphs

We study the abelian sandpile model on different families of graphs. We introduced the avalanche polynomial which enumerates the size of the avalanches triggered by the addition of a particle on a recurrent configuration. This polynomial is calculated for several families of graphs. In the case of the complete graph, the result involves some known result on Parking functions [12, 11]. Bak, Tang...

full text

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

full text

Domination parameters of Cayley graphs of some groups

‎In this paper‎, ‎we investigate domination number‎, ‎$gamma$‎, ‎as well‎ ‎as signed domination number‎, ‎$gamma_{_S}$‎, ‎of all cubic Cayley‎ ‎graphs of cyclic and quaternion groups‎. ‎In addition‎, ‎we show that‎ ‎the domination and signed domination numbers of cubic graphs depend‎ on each other‎.

full text

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

full text

New families of graphs whose independence polynomials have only real roots

We describe an inductive means of constructing infinite families of graphs, every one of whose members G has independence polynomial I(G; x) having only real zeros. Consequently, such independence polynomials are logarithmically concave and unimodal.

full text

My Resources

Save resource for easier access later


Journal title:
iranian journal of mathematical sciences and informatics

جلد ۱۲، شماره ۱، صفحات ۶۹-۸۰

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023